Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetra- μ-benzoato-bis[(6-methylquinoline)copper(II)]

Seung Man Yu, ${ }^{\text {a }}$ Chi-Ho Park, ${ }^{\mathbf{b}}$ Pan-Gi Kim, ${ }^{\text {c }}$ Cheal Kim ${ }^{\text {a }}{ }^{\text {* }}$ and Youngmee Kim ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea,
${ }^{\mathbf{b}}$ National Institute of Animal Science (NIAS), RDA, Suwon 441-350, Republic of Korea, ${ }^{\text {c }}$ Department of Forest and Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and dDepartment of Chemistry and Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

Received 15 May 2008; accepted 30 May 2008
Key indicators: single-crystal X-ray study; $T=288 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.042 ; w R$ factor $=0.101$; data-to-parameter ratio $=14.1$.

In the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$, the paddle-wheel-type dinuclear complex is constructed by four bridging benzoate groups and two terminal 6-methylquinoline ligands. The asymmetric unit contains one-half of the whole molecule, and there is an inversion center at the mid-point of the $\mathrm{Cu} \cdots \mathrm{Cu}$ bond. The octahedral coordination of each Cu atom, with four O atoms in the equatorial plane, is completed by the N atom of the 6-methylquinoline molecule $[\mathrm{Cu}-\mathrm{N}=$ $2.212(2) \AA$ A and by another Cu atom $[\mathrm{Cu} \cdots \mathrm{Cu}=$ 2.6939 (13) \AA]. The Cu atom lies $0.234 \AA$ out of the plane of the four O atoms. The molecular packing is stabilized by one intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ as well as $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Related literature

For related literature, see: Batten \& Robson (1998); Chun et al. (2005); Cotton \& Walton (1993); Janiak (2003); Lee et al. (2008); Mines et al. (2002); Pichon et al. (2007); Yoo et al. (2003).

Experimental

Crystal data
$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$
$\gamma=81.107(10)^{\circ}$
$M_{r}=897.88$
$V=1006.5(11) \AA^{3}$
Triclinic, $P \overline{1}$
$a=10.420$ (7) \AA
$Z=1$
$b=10.590$ (7) \AA
Mo $K \alpha$ radiation
$c=10.751$ (6) \AA
$\mu=1.12 \mathrm{~mm}^{-1}$
$\alpha=70.399$ (11) ${ }^{\circ}$
$T=288(2) \mathrm{K}$
$0.10 \times 0.08 \times 0.08 \mathrm{~mm}$
$\beta=64.234(10)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS: Bruker, 1997)
$T_{\text {min }}=0.898, T_{\text {max }}=0.915$
5579 measured reflections 3848 independent reflections 3001 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 272$ parameters
$w R\left(F^{2}\right)=0.100$
H -atom parameters constrained
$S=1.04$
3848 reflections
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
Cg 1 is the centroid of the C22-C27 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 11$	0.93	2.50	$3.047(4)$	118
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg} 1^{\mathrm{i}}$	0.93	2.82	$3.734(3)$	168

Symmetry code: (i) $x, y, z+1$.

Table 2
$\pi-\pi$ interactions ($\AA,{ }^{\circ}$).
Cg 2 is the centroid of ring C22-C27. The offset is defined as the distance between $C g I$ and the perpendicular projection of $C g J$ on ring I.

$C g I$	$C g J$	$C g I \cdots C g J$	Dihedral angle	Interplanar distance	Offset
$C g 2$	$C g 2 \mathrm{i}$	$3.967(4)$	0	3.39	2.06

Symmetry code: (i) $-x+2,-y+2,-z$.

metal-organic compounds

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of Environment, the Cooperative Research Program for Agricultural Science and Technology Development (20070301-036-019-02), and the Seoul R\&BD Program is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2146).

References

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chun, H., Dybtsev, D. N., Kim, H. \& Kim, K. (2005). Chem. Eur. J. 11, 35213529.

Cotton, F. A. \& Walton, R. A. (1993). Multiple Bonds Between Metal Atoms, 2nd ed. New York: Oxford University Press.
Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. \& Kim, Y. (2008). Acta Cryst. E64, m286.
Mines, G. A., Tzeng, B.-C., Stevenson, K. J., Li, J. \& Hupp, J. T. (2002). Angew. Chem. Int. Ed. 41, 154-157.
Pichon, A., Fierro, C. M., Nieuwenhuyzen, M. \& James, L. (2007). CrystEngComm, 9, 449-451.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yoo, S.-K., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. \& Kim, Y. (2003). Dalton Trans. pp. 1454-1456.

